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We generalize the linear stability analysis of the axisymmetric self-similar solution of
gravity currents from finite-volume releases to include perturbations that depend on
both radial and azimuthal coordinates. We show that the similarity solution is stable to
sufficiently small perturbations by proving that all perturbation eigenfunctions decay
in time. Moreover, asymmetric perturbations are shown to decay more rapidly than
axisymmetric perturbations in general. An asymptotic formula for the eigenvalues is
derived, which indicates that asymptotic rates of decay of perturbations are given by
t−σ where 0 <σ < 1

4
as the Froude number decreases from

√
2 to 0. We demonstrate

that this formula agrees closely with numerically calculated eigenvalues and, in the
absence of azimuthal dependence, it reduces to an expression that improves on the
asymptotic formula obtained by Grundy & Rottman (1985). For two-dimensional
(planar) currents, we further prove analytically that all perturbation eigenfunctions
decay like t−1/2.

1. Introduction
Inertial gravity currents occur in many natural and industrial situations, driven

by density gradients which may be due to differences in fluid composition, phase,
temperature or concentration of suspended particulate. For example, differences in
salinity account for the spreading of fresh river water above seawater in estuarine
environments, whilst the flow of sediment-laden turbidity currents along ocean floors
is driven by differences in the concentration of particle suspensions. A comprehensive
review of other examples is provided by Simpson (1997).

The first mathematical study of the motion of a high-Reynolds-number gravity
current was carried out by von Kármán (1940). Using the Bernoulli equation, he
established that the rate of advance of the front is a function of the height at the
front of the gravity current and the specific ratio of the density difference between
the two fluids. There have been numerous subsequent studies, both theoretical and
experimental, to investigate flows produced by the instantaneous release of a finite
volume of dense fluid within an ambient fluid of lower density (see, for example,
Fay 1969; Fannelop & Waldman 1972; Hoult 1972; Huppert & Simpson 1980). In
these studies, a model is developed which describes the flow of the current in the
regime when the inertia associated with the moving fluid is balanced by the driving
gravitational force arising from the density differences, while the force due to viscous
drag is negligible. On the assumption that the thickness of the current is small
compared with its length and with the depth of the ambient, this model employs the
shallow-water approximation. The main assumptions of the shallow-water approach
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are that vertical accelerations are negligible and the pressure adopts a hydrostatic
distribution. Moreover, the two fluids are assumed to be incompressible and miscible
(so that surface-tension effects are unimportant) and any mixing between them is
neglected. Laboratory experiments conducted by Hallworth et al. (1996) indicated
that, while some entrainment (and hence mixing) occurs, the rate of advance of the
front predicted by this model is in good agreement with experimental measurements,
at least during the early stages of its motion.

A dynamic condition is required near the front because dissipation and vertical
accelerations are no longer negligible and hence the shallow-water assumptions are not
valid there. A Froude number condition, linking the frontal velocity with the height, is
imposed (von Kármán 1940; Benjamin 1968; Huppert & Simpson 1980). This condi-
tion has subsequently been utilized with success (see, for example, Hallworth, Hogg &
Huppert 1998; Hogg, Ungarish & Huppert 2000; Shin, Dalziel & Linden 2004).

When gravity currents are driven by compositional differences between the intruding
fluid and the surrounding ambient they are termed homogeneous gravity currents and
a self-similar solution of the shallow-water equations governing their evolution can
be found (Fannelop & Waldman 1972; Hoult 1972). The existence of this solution
is based on the assumption that the density difference between the fluids remains
constant as the flow develops and it indicates that currents with the same volume
approach the same height profile in the intermediate asymptotic regime even if
they evolve from different initial conditions. In the case of particle-driven currents
however, particle sedimentation means that the density difference between the fluids
is no longer constant in time, but declines progressively and the motion is not self-
similar. Significant insight into the dynamics of these flows can be gained by deriving
asymptotic series about the self-similar solution to obtain the deviations from the
self-similar flow which describe the particle-driven currents (see, for example, Hogg
et al. 2000; Harris, Hogg & Huppert 2001). Although the regime in which these
expansions are valid is usually limited, the first-order asymptotic functions derived
using this approach provide valuable information about the structure of the solutions
of the particle-driven currents and the way in which their evolution differs from the
homogeneous currents of the same initial excess density.

Grundy & Rottman (1985, referred to as GR herein) have studied the development
of the self-similar solutions subsequent to the introduction of a small perturbation
(disturbance), for both planar and axisymmetric gravity currents, and established
that they are linearly stable. By imposing a disturbance with two-dimensional and
radial symmetry in the planar and axisymmetric cases, respectively, they showed that
all eigenfunctions of the disturbance decay in time. They also derived asymptotic
formulae for the eigenvalues that specify the decay rates of the perturbations. In this
paper, we extend the analysis in axisymmetric geometry to the case where the distur-
bance depends on both the radial and azimuthal coordinates. Using a combination
of analytical, asymptotic and numerical techniques, we show that all the disturbance
eigenfunctions decay in time. We find that rates of decay are functions of the Froude
number and azimuthal dependence. Perturbations of axisymmetric shape are shown to
decay less rapidly than asymmetric perturbations in general. An asymptotic formula
derived for the eigenvalues of the problem reveals that asymptotic rates of decay
approach a constant value which depends on the Froude number only. The asymptotic
rates of decay of perturbations are given by t−σ , where 0 <σ < 1

4
, as the Froude

number decreases from
√

2 to 0. We demonstrate that the asymptotic formula has
excellent convergence to numerically calculated values and, in the absence of azimuthal
dependence, it simplifies to an expression that improves on the asymptotic formula
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presented by GR. We show how the eigenfunctions of the disturbance are related to the
group of transformations under the action of which the problem is invariant. In two-
dimensional (planar) geometry, GR have found through numerical and asymptotic
techniques that all the eigenfunctions of the symmetric perturbations decay like t−1/2.

We present an analytical proof of this result.
We present the mathematical formulation and self-similar solution of the problem

in axisymmetric geometry in § 2. A linear stability analysis is carried out in § 3 to
determine whether small perturbations involving both radial and azimuthal depen-
dences, imposed on the self-similar solution, grow or decay in time. The asymptotic
formula for the eigenvalues is also derived in § 3.2. In § 3.3, we demonstrate the
connection between the disturbance eigenfunctions and the symmetry transformations
of the problem. The main findings of the paper are summarized in § 4. The proof that
all two-dimensional eigenfunctions decay like t−1/2 is presented in the Appendix.

2. Governing equations and self-similar solution
We study the motion of a gravity current generated by the finite release from a

localized source of a homogeneous fluid of density ρ+�ρ within a deep and quiescent
ambient of constant density ρ. We adopt cylindrical polar coordinates r, θ, z, and
denote the vertically averaged velocity component in the radial direction by u. We
assume that the horizontal lengthscale of the flow far exceeds the vertical lengthscale
so that the pressure adopts a hydrostatic distribution. Furthermore, we neglect drag
forces and assume that the azimuthal velocity component is identically zero. If the
height of the current is denoted by h, the dimensionless shallow-water governing
equations are given by

r∂th + ∂r (ruh) = 0, (2.1)

∂tu + ∂r

(
1
2
u2 + h

)
= 0, (2.2)

representing conservation of mass and momentum, respectively, in the domain 0 �
r � rF , where rF (t) is the dimensionless position of the front. Here, lengths and times
have been made dimensionless with respect to the lengthscale h0 and the timescale
(h0/g

′)1/2, respectively, where h0 is the characteristic initial lengthscale of the current
and g′ = �ρg/ρ is the reduced gravity. We note that the same governing equations
also apply to the flow of a gravity current in a sector of constant angle (Bonnecaze
et al. 1995). The boundary conditions are given by∫ rF

0

rh(r, t) dr = V, (2.3)

u(0, t) = 0, (2.4)

ṙ2
F = Fr2h(rF , t), (2.5)

ṙF = u(rF , t), (2.6)

where 2πV is the dimensionless volume of the current, ṙ = dr/dt, and Fr denotes
the Froude number. These equations represent the integral expression for global
conservation of volume (2.3), symmetry condition at the origin (2.4), the dynamic
condition at the front (2.5), and the kinematic condition at the front (2.6).

In (2.5), the Froude number provides a connection between the height and velocity
at the front of the flow and is required to supplement the shallow-water model
because, at the front, the motion may no longer be governed by hydrostatic balance.
Previous theoretical and experimental analyses have determined the Froude number
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as a function of the height of the current relative to the depth of the flow (see, for
example, Benjamin 1968; Huppert & Simpson 1980; Shin et al. 2004). In this study, we
consider a regime in which the current is moving through a much deeper ambient and
the Froude number adopts a constant value; Benjamin (1968) determined that Fr =

√
2

from theoretical considerations, while Huppert & Simpson (1980) find experimentally
that Fr = 1.2. Here we solely assume that Fr is a constant, but at this stage do not
need to prescribe a particular value to develop the ensuing stability analysis.

The equations (2.1) and (2.2) prompt the scalings u ∼ r/t and h ∼ (r/t)2, respectively.
These, when combined with the scaling r2h ∼ V from (2.3), give the scale of the radius
of the current r ∼ (V t2)1/4. Motivated by these scales, we look for a self-similar
solution of the form

u(r, t) = 1
2
kt−1/2U0(ξ ), (2.7)

h(r, t) = 1
4
k2t−1H0(ξ ), (2.8)

where the similarity variable ξ = r/[b(V t2)1/4] and the constants k and b = kV −1/4 are
to be determined such that ξ = 1 at the front. Substituting into the system (2.1)–(2.6),
and solving, yields (Fannelop & Waldman 1972; Hoult 1972)

U0(ξ ) = ξ, (2.9)

H0(ξ ) = 1
2
(ξ 2 + �), (2.10)

where � = 2/Fr2 − 1 and the constant b = [32Fr2/(4 − Fr2)]1/4. The position of the
front is given by rF = kt1/2. This similarity solution is valid for Froude numbers in
the interval 0 <Fr �

√
2. As the Froude number increases (with the volume of the

current kept fixed), the length of the current increases while its height at the origin
decreases. When Fr =

√
2, we have b = 25/4, � =0, H0(ξ ) = 1

2
ξ 2, and the height of the

current vanishes at the origin.
When Fr >

√
2, the parameter � =(2/Fr2 − 1) < 0 and the self-similar height profile

is given by

H0(ξ ) =

{
0, 0 < ξ < ξc,

1
2
(ξ 2 + �), ξc < ξ < 1,

where ξc = (1 − 2/Fr2)1/2 > 0. In this case, no fluid occupies the region 0 < ξ < ξc

around the origin, and the constant that determines the position of the front of the
current is given by b = 23/4Fr.

We remark that the analysis carried out in the remainder of this paper focuses on
the similarity solution (2.7)–(2.10) valid for 0<Fr �

√
2. It has been shown by GR

that a small radially symmetric disturbance imposed on this solution decays in time.
The purpose of the present study is to analyse the case where the imposed disturbance
depends on both the radial and azimuthal coordinates.

3. θ-dependent perturbation
We study the evolution of the self-similar solution (2.7)–(2.10) subsequent to the

introduction of a small disturbance that depends on both the radial and the azimuthal
coordinates. The (dimensionless) governing equations, which must also account for
azimuthal variations now, are given by

r∂th + ∂r (ruh) + ∂θ (vh) = 0, (3.11)

r∂tu + r∂r

(
1
2
u2 + h

)
+ v∂θu − v2 = 0, (3.12)

r∂tv + ru∂rv + uv + v∂θv + ∂θh = 0, (3.13)
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where v represents the depth-averaged velocity component in the azimuthal direction.
These equations are expressions of conservation of mass (3.11), radial component
of conservation of momentum (3.12), and azimuthal component of conservation of
momentum (3.13). They are valid in the domain 0 � r � rF , where rF (θ, t) is the dimen-
sionless position of the front, and are subject to the following boundary conditions.

The expression for global conservation of volume now becomes∫ 2π

0

∫ rF

0

rh(r, θ, t) dr dθ = 2πV. (3.14)

At the origin, the symmetry condition no longer holds, but we must have finite flux
and height.

We define the position of the front as F(r, θ, t) = r − rF (θ, t) = 0. Thus ∇F =

(rF r̂ − r ′
F θ̂)/rF and the normal velocity of the front is given by

− ∂tF
|∇F| = − ṙF rF√

r2
F + r ′

F
2
, (3.15)

where r ′
F = ∂θrF , ṙF = ∂t rF , and r̂ and θ̂ are unit vectors in the radial and azimuthal

directions, respectively. The normal velocity of the fluid at the front is

u · n̂ = u · ∇F
|∇F| =

urF − vr ′
F√

r2
F + r ′

F
2
, (3.16)

where u = ur̂ + vθ̂ . Since the flux across the front is zero, the curve F = 0 must
always be composed of the same fluid particles, and hence (3.15) is equal to (3.16).
This yields the kinematic condition

rF ṙF + r ′
F v = rF u, at r = rF . (3.17)

The Froude number condition in this case becomes u · n̂ = Fr{h(rF , θ, t)}1/2, which
gives

rF u − r ′
F v = Fr

(
r2
F + rF

′2)1/2
h1/2, at r = rF . (3.18)

3.1. Linear stability analysis

To analyse the evolution of the perturbation, we introduce expansions about the
self-similar solution as follows:

u(r, θ, t) = 1
2
kt−1/2{U0(ξ ) + δU1(ξ, θ, t) + · · ·},

v(r, θ, t) = 1
2
kt−1/2{δV1(ξ, θ, t) + · · ·},

h(r, θ, t) = 1
4
k2t−1{H0(ξ ) + δH1(ξ, θ, t) + · · ·},

rF (θ, t) = kt1/2{1 + δξF1(θ, t) + · · ·},

where δ � 1 is the amplitude of the perturbations. Substituting these expansions into
the governing equations (3.11)–(3.18) recovers the self-similar solution at O(1). At
O(δ), the equations governing the evolution of the perturbation quantities are found
to be

2ξ t∂tH1 + ∂ξ (ξH0U1) + H0∂θV1 = 0, (3.19)

2t∂tU1 + ∂ξH1 = 0, (3.20)

2ξ t∂tV1 + ∂θH1 = 0. (3.21)
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The boundary conditions at the front of the current become

U1(1, θ, t) = 2t ξ̇F1, (3.22)

H1(1, θ, t) = 2(� + 1)t ξ̇F1 + �ξF1. (3.23)

At the origin, H1, U1, and V1 must remain finite.
The equations (3.19)–(3.21) can be combined into the following second-order partial

differential equation for H1:

4ξ 2t∂t (t∂tH1) = ξ∂ξ (ξH0∂ξH1) + H0∂θ∂θH1, (3.24)

subject to the boundary condition (3.23) at the front and that H1 must remain finite
at the origin. A third boundary condition for H1 is obtained by combining (3.20) and
(3.22), and it is given by

∂ξH1(1, θ, t) = −4(t ξ̇F1 + t2ξ̈F1). (3.25)

By the method of separation of variables we then look for a solution of the form

H1(ξ, θ, t) =

∞∑
m=0

∞∑
n=0

αmnt
λmneimθΦmn(ξ ),

ξF1(θ, t) =

∞∑
m=0

∞∑
n=0

γmnt
λmneimθ ,

where αmn and γmn are complex constants, and λmn = Λmn +iΩmn (with Λmn, Ωmn ∈ �)
are the eigenvalues of the system. Proving linear stability of the self-similar solution
(2.7)–(2.10) therefore involves showing that none of the Λmn are positive. Substituting
into the system (3.22)–(3.25) indicates that the functions Φmn satisfy the following
ordinary differential equation:

ξ 2(ξ 2 + �)Φ ′′
mn + ξ (3ξ 2 + �)Φ ′

mn − {(8λ2 + m2)ξ 2 + m2�}Φmn = 0, (3.26)

subject to the boundary conditions

Φmn(1) = γmn[2(� + 1)λmn + �]/αmn, (3.27)

Φ ′
mn(1) = −4γmnλ

2
mn/αmn, (3.28)

Φmn(0) is non-singular. (3.29)

Making the substitutions ξ 2 = −�η and Φmn = ηm/2Gmn(η), successively, transforms
equation (3.26) into

η(1 − η)G′′
mn + {1 + m − (2 + m)η}G′

mn +
(
2λ2

mn − 1
2
m

)
Gmn = 0, (3.30)

which is the hypergeometric differential equation (Abramowitz & Stegun 1965). A
solution which satisfies (3.27) and (3.29) is found to be

Φmn(ξ ) = γmn[2(� + 1)λmn + �]ξm 2F1(amn, bmn; m + 1; −ξ 2/�)

αmn 2F1(amn, bmn; m + 1; −1/�)
, (3.31)

where

amn = 1
2
(m + 1) + 1

2

√
1 + m2 + 8λ2

mn,

bmn = 1
2
(m + 1) − 1

2

√
1 + m2 + 8λ2

mn,

and the symbol 2F1 denotes the hypergeometric function.
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At this stage, we can show that all Λmn < 0. Using an approach similar to that
employed by GR, we take the complex conjugate of (3.26), multiply by λ2

mnΦmn, and
integrate over [0, 1] to get

λ2
mn

∫ 1

0

Φmn[ξ (ξ 2 + �)Φ̄ ′
mn]

′ dξ − 8
∣∣λ2

mn

∣∣2 ∫ 1

0

ξ |Φmn|2 dξ

− m2λ2
mn

∫ 1

0

(
ξ +

�

ξ

)
|Φmn|2 dξ = 0, (3.32)

where z̄ denotes the complex conjugate of z. Evaluating the first integral by parts and
using the boundary conditions (3.27)–(3.29) yields a quadratic equation for λmn,

Aλ2
mn + Bλmn + C = 0, (3.33)

where

A =

∫ 1

0

{m2|Φmn|2 + ξ 2|Φ ′
mn|2}

(
ξ 2 + �

ξ

)
dξ,

B = 8(1 + �)2
∣∣∣∣λ2

mnγmn

αmn

∣∣∣∣
2

,

C = 4�(1 + �)

∣∣∣∣λ2
mnγmn

αmn

∣∣∣∣
2

+ 8
∣∣λ2

mn

∣∣2 ∫ 1

0

ξ |Φmn|2 dξ.

The term A is regular at ξ = 0 only if |Φmn|2 = O(ξϕ), where ϕ > 0. From (3.31) we
have |Φmn|2 =O(ξ 2m) as ξ → 0, which implies that A will be non-singular when m > 0.

However, A is also non-singular when m =0 because the term involving 1/ξ in the
integrand vanishes. Thus, A is positive and real for all λmn. Both B and C are also
real and positive for all λmn and hence equation (3.33) satisfied by the eigenvalues
λmn has real positive coefficients. This has two implications: first, all eigenvalues λmn

must occur in complex conjugate pairs and, second, all eigenvalues λmn must have
negative real parts. The latter establishes that all perturbation eigenfunctions decay in
time and hence the self-similar solution (2.7)–(2.10) is linearly stable to perturbations
which depend on both r and θ.

3.2. Asymptotic formula for eigenvalues

The eigenvalues are found by requiring that the solution (3.31) should also satisfy the
boundary condition (3.28). Substituting (3.31) into (3.28) gives the following equation
for the eigenvalues λmn

2F1(amn + 1, bmn + 1; m + 2; −1/�)

2F1(amn, bmn; m + 1; −1/�)
=

−�(m + 1)

4λ2
mn − m

{
m +

4λ2
mn

2(� + 1)λmn + �

}
. (3.34)

We remark that there exist simple eigensolutions of (3.26) for which (3.34) is
trivially satisfied and they correspond to the eigenvalues λ0V =0, λ0T = − 1 for m = 0,

and λ1S = − 1
2

for m =1. We demonstrate below that these eigensolutions are
associated with volume-changing, time-shifting and space-translating transformations,
respectively. Thus the eigenvalue λ0V = 0 does not negate the stability.
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m = 0

n Numerical λ0n Asymptotic λ0n Absolute Ω0n error % Error

1 −0.1966 + 1.4717i −0.2203 +

{
1.5753i
1.2602i (GR)

0.1036
0.2112

7.0
14.4

2 −0.2134 + 2.7768i −0.2203 +

{
2.8355i
2.5204i (GR)

0.0587
0.2564

2.1
9.2

3 −0.2171 + 4.0550i −0.2203 +

{
4.0957i
3.7806i (GR)

0.0407
0.2744

1.0
6.8

4 −0.2184 + 5.3248i −0.2203 +

{
5.3559i
5.0409i (GR)

0.0311
0.2839

0.6
5.3

5 −0.2191 + 6.5909i −0.2203 +

{
6.6161i
6.3011i (GR)

0.0252
0.2898

0.4
4.4

6 −0.2195 + 7.8551i −0.2203 +

{
7.8763i
7.5613i (GR)

0.0212
0.2938

0.3
3.7

7 −0.2197 + 9.1183i −0.2203 +

{
9.1366i
8.8215i (GR)

0.0183
0.2968

0.2
3.3

8 −0.2198 + 10.3807i −0.2203 +

{
10.3968i
10.0817i (GR)

0.0161
0.2990

0.2
2.9

9 −0.2199 + 11.6426i −0.2203 +

{
11.6570i
11.3419i (GR)

0.0144
0.3007

0.1
2.6

10 −0.2200 + 12.9043i −0.2203 +

{
12.9172i
12.6022i (GR)

0.0129
0.3021

0.0
2.3

m = 1 m = 2

n Numerical λmn Asymptotic λmn Numerical λmn Asymptotic λmn

1 −0.2176 + 2.1059i −Λ∞ + 2.2054i −0.2385 + 2.7056i −Λ∞ + 2.8355i
2 −0.2193 + 3.4040i −Λ∞ + 3.4656i −0.2279 + 4.0127i −Λ∞ + 4.0957i
3 −0.2198 + 4.6818i −Λ∞ + 4.7258i −0.2245 + 5.2942i −Λ∞ + 5.3559i
4 −0.2200 + 5.9515i −Λ∞ + 5.9860i −0.2230 + 6.5668i −Λ∞ + 6.6161i
5 −0.2201 + 7.2178i −Λ∞ + 7.2462i −0.2222 + 7.8352i −Λ∞ + 7.8763i
6 −0.2202 + 8.4822i −Λ∞ + 8.5065i −0.2217 + 9.1013i −Λ∞ + 9.1366i
7 −0.2202 + 9.7456i −Λ∞ + 9.7667i −0.2214 + 10.3658i −Λ∞ + 10.3968i
8 −0.2202 + 11.0082i −Λ∞ + 11.0269i −0.2212 + 11.6295i −Λ∞ + 11.6570i
9 −0.2203 + 12.2704i −Λ∞ + 12.2871i −0.2210 + 12.8924i −Λ∞ + 12.9172i

10 −0.2203 + 13.5322i −Λ∞ + 13.5473i −0.2209 + 14.1549i −Λ∞ + 14.1774i

Table 1. The first ten eigenvalues for m = 0, 1, and m = 2, respectively. For the case m = 0,
the asymptotic results of GR are also shown. In all cases, eigenvalues have been computed
correct to four decimal places, Fr = 1, and Λ∞ 	 0.2203.

Using the formula (A 18) from the Appendix, we express equation (3.34) in the
form

2F1(m − amn + 1, m − bmn + 1; m + 2; −1/�)

2F1(m − amn + 1, m − bmn + 1; m + 1; −1/�)

=
−(� + 1)(m + 1)

4λ2
mn − m

{
m +

4λ2
mn

2(� + 1)λmn + �

}
. (3.35)

We have solved this equation numerically using Maple and values of λmn obtained are
shown in table 1. It is useful to also derive an asymptotic formula for the eigenvalues



Stability of gravity currents generated by finite-volume releases 269

by taking the limit |Ωmn| → ∞. We note that
√

1 + m2 + 8λ2
mn ∼ 2

√
2λmn for Ωmn 
 m

and hence the leading-order terms in equation (3.35) may be written as

2F1

(
1
2
(m + 1) +

√
2λmn,

1
2
(m + 1) −

√
2λmn; m + 2; −1/�

)
2F1

(
1
2
(m + 1) +

√
2λmn,

1
2
(m + 1) −

√
2λmn; m + 1; −1/�

)
=

−(� + 1)(m + 1)

4λ2
mn − m

{
m +

4λ2
mn

2(� + 1)λmn + �

}
. (3.36)

We express the hypergeometric functions in integral form and the left-hand side of
(3.36) becomes

2(m + 1)

m + 1 − 2
√

2λmn

×

∫ 1

0

T
√

2λmn+
m−1

2 (1 − T)
m+1

2 −
√

2λmn(� + T)
√

2λmn− m+1
2 dT∫ 1

0

T
√

2λmn+
m−1

2 (1 − T)
m−1

2 −
√

2λmn(� + T)
√

2λmn− m+1
2 dT

. (3.37)

It is convenient to make the substitution ζ = T/(1 − T) which transforms the
integrals to

Ξ =

∫ ∞

0

ζ
√

2λmn+
m−1

2 (1 + ζ )− m+3
2 −

√
2λmn[� + (1 + �)ζ ]

√
2λmn− m+1

2 dζ∫ ∞

0

ζ
√

2λmn+
m−1

2 (1 + ζ )− m+1
2 −

√
2λmn[� + (1 + �)ζ ]

√
2λmn− m+1

2 dζ

.

The leading-order estimate of these integrals in the limit Ωmn → ∞ can now be
calculated using the method of steepest descents. We find

√
� + 1

{
ip1e

iϑ1 + p2e
iϑ2

−ip1eiϑ1 + p2eiϑ2

}
,

where

p1 = (
√

� + 1 + 1)2
√

2Λmn, ϑ1 = 2
√

2 Ωmn ln(
√

� + 1 + 1) − 1
2
mπ,

p2 = (
√

� + 1 − 1)2
√

2Λmn, ϑ2 = 2
√

2 Ωmn ln(
√

� + 1 − 1) + 1
2
mπ.

Equation (3.36) now becomes

Ξ =
(� + 1)(2

√
2λmn − m − 1)

2(4λ2
mn − m)

{
m +

4λ2
mn

2(� + 1)λmn + �

}
,

and the expression on the right-hand side approaches 1/
√

2 as Ωmn → ∞. Thus, in the
limit Ωmn → ∞, equation (3.36) becomes

√
� + 1

{
ip1e

iϑ1 + p2e
iϑ2

−ip1eiϑ1 + p2eiϑ2

}
=

1√
2
. (3.38)

The imaginary components of (3.38) yield

(
√

� + 1 + 1)2
√

2Λmn(
√

2(� + 1) + 1) cos(ϑ1 − ϑ2) = 0.

Since � � 0, because � + 1 = 2/Fr2 and 0 <Fr �
√

2 for the self-similar solutions under
consideration, the solution of this equation is cos(ϑ1 − ϑ2) = 0, which gives

ϑ1 − ϑ2 =
(
n + 1

2

)
π, n = 0, 1, 2, 3, . . . . (3.39)
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Balancing the real parts of equation (3.38) then gives{√
� + 1 + 1√
� + 1 − 1

}2
√

2Λmn

= (−1)n
√

2(� + 1) − 1√
2(� + 1) + 1

,

for which no solution exists when n is odd. When n is even the solution

Λmn =
−{ln(

√
2(� + 1) + 1) − ln(

√
2(� + 1) − 1)}

2
√

2{ln(
√

� + 1 + 1) − ln(
√

� + 1 − 1)}
. (3.40)

Equation (3.39) now gives

Ωmn =

(
m + 2n + 1

2

)
π

2
√

2{ln(
√

� + 1 + 1) − ln(
√

� + 1 − 1)}
, m, n = 0, 1, 2, 3, . . . (3.41)

where n has been replaced by 2n on the left-hand side because only even values are
involved.

The values generated by expressions (3.40) and (3.41), derived by the foregoing
asymptotic analysis, are expected to provide good estimates of λmn in the regime
Ωmn → ∞. The asymptotic analysis however does not guarantee accuracy in the
neighbourhood of Ωmn = 0. A comparison of the eigenvalues generated by the
asymptotic expressions with those calculated numerically is shown in table 1 and
figure 1. The rate of convergence between the asymptotic and numerical values is
shown to be very high as Ωmn increases. In the neighbourhood of Ωmn = 0, our
numerical calculations yielded no eigenvalues corresponding to the eigenvalues given
by the asymptotic expressions when n= 0. We conclude that these eigenvalues are
spurious and exclude n= 0.

Therefore, for large values of |Ωmn|, the eigenvalues are given by

λmn =
−{ln(2 + Fr) − ln(2 − Fr)} ± i

(
m + 2n + 1

2

)
π

2
√

2{ln(
√

2 + Fr) − ln(
√

2 − Fr)}
, (3.42)

where m =0, 1, 2, . . . and n = 1, 2, 3, . . . .

Setting m =0 in (3.42) gives

λ0n =
−{ln(2 + Fr) − ln(2 − Fr)} ± i

(
2n + 1

2

)
π

2
√

2{ln(
√

2 + Fr) − ln(
√

2 − Fr)}
, n = 1, 2, 3, . . . , (3.43)

which is an asymptotic expression for the eigenvalues of axisymmetric perturbations.
This formula differs from the asymptotic result presented by GR (after we have
corrected a typographical error of a factor of 2 in their formula) by an additive
constant of 1

2
iπ in the numerator. We demonstrate below that the estimates generated

by (3.43) are superior to those generated by the formula of GR.
The perturbation height function is given by

H1 =

∞∑
m=0

∞∑
n=0

tΛmnΦmn(ξ ){cmn cos(mθ + Ωmn ln t) + dmn sin(mθ + Ωmn ln t)}, (3.44)

where cmn and dmn are constants related to αmn and γmn and their values are determined
from the initial distribution of the disturbance. The form of the eigenfunctions Φmn

is shown in figure 2. It is shown that at the origin, in the absence of θ-dependence,
all the height perturbation eigenfunctions are non-zero but they have zero gradients.
The presence of θ-dependence means the symmetry at the origin is broken and then
all the height perturbation eigenfunctions vanish at the origin.
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Figure 1. A comparison of the eigenvalues calculated numerically (�) and using the
asymptotic formula (3.42) (�) for m= 0 and m= 3, respectively. In both cases Fr = 1. For
the case m= 0, the predictions of the asymptotic formula of GR (�) are also displayed for
comparison.

For m =0, our numerically calculated eigenvalues are in agreement with those
obtained by GR (for β = 1 in their notation). A comparison of the estimates provided
by the asymptotic formula (3.43) and the asymptotic formula of GR is shown in table 1
and figure 1. While both formulas predict the same spacing between consecutive values
of Ω0n, our formula is shown to produce a better estimate even for the smallest Ω0n,

and also has a faster rate of convergence towards the exact eigenvalues as Ω0n

increases. In fact, even though the relative errors for both formulas decrease as
Ω0n increases, the absolute error for the formula of GR is shown to increase as
Ω0n increases. This means that the distance between the estimates and the exact
eigenvalues does not become smaller as Ω0n increases.

For general values of m, the asymptotic analysis indicates that as Ωmn → ∞ keeping
Fr fixed, the rates of decay, Λmn, of the eigenfunctions approach the same value
(given by (3.40) and denoted by Λ∞ hereafter) irrespective of whether the disturbance
depends on θ or not. A graphical illustration of how Λ∞ varies with Fr is shown in
figure 3. It indicates that the asymptotic rates of decay of perturbations decrease from
t−1/4 towards t0 as Fr increases from 0 to

√
2. For example, when Fr = 1, the asymptotic

rate of decay is t−0.22. The numerical calculations show that the direction from which
the asymptotic rate of decay is approached is a function of m. For m =0 and m = 1,
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Figure 2. The first nine eigenfunctions of the perturbation height H1 plotted as functions
of the radial similarity variable ξ, calculated for Fr = 1. The positive and negative ξ -axes
represent the θ = 0 and θ = π directions, respectively. All functions have been rescaled such
that max{Φmn(ξ )} =1.

the direction of approach is from above, while for m � 2 the direction of approach
is from below, as shown in figure 1. This represents a significant deviation from
the usual situation whereby the eigenfunction corresponding to the smallest value of
n has the smallest rate of decay and hence gives the leading-order estimate of the
disturbance. In this problem we can see that if the initial disturbance does not involve
the m = 0 and m = 1 eigenfunctions of θ, then the λm1 eigenfunction will decay faster
than all the subsequent eigenfunctions. For example, if the initial disturbance has
the form f0(ξ ) cos 4θ, then the first eigenfunction will decay approximately like t−0.28
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Fr

1.41.21.00.80.60.40.20
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–0.25

Λ∞

Figure 3. The asymptotic rate of decay Λ∞ of perturbations plotted as a function of the
Froude number Fr.

while the second one decays like t−0.25. The fact that Λ∞ is approached from below
if m � 2 and from above otherwise also means that the smallest values of |Λmn|, and
hence the lowest rates of decay, occur when m =0. Thus, axisymmetric perturbations
will decay less rapidly than asymmetric ones in general. This is opposite to the result
obtained for perturbations imposed on the axisymmetric Barenblatt–Pattle solution,
where it has been shown (Mathunjwa & Hogg 2006) that axisymmetric perturbations
decay more rapidly than asymmetric ones.

3.3. Connection with symmetry transformations

We remark that the structure of the self-similar solution (2.7)–(2.10) is unchanged
under the action of transformations that alter the volume of the current or shift
the origin in time or space. We demonstrate that, for m =0, the simple eigenvalues
λ0V = 0 and λ0T = −1 are associated with volume-changing and time-shifting symmetry
transformations, respectively. Substituting these eigenvalues into (3.31) and using
(3.20) yields the eigenfunctions

Φ0V = γ0V �/α0V , (3.45)

Ψ0V = 0, (3.46)

Φ0T = −γ0T (2ξ 2 + �)/α0T , (3.47)

Ψ0T = −2γ0T ξ/α0T . (3.48)

To find the coefficients of infinitesimal transformations, we first express the similarity
solution in terms of the primitive variables

u(r, t) = 1
2
kt−1/2U0(ξ ) =

r

2t
,

h(r, t) = 1
4
k2t−1H0(ξ ) =

1

8

{(
r

t

)2

+
k2�

t

}
.
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Transformations that alter the volume are represented by V �−→ V + δ. Using the
relation k = bV 1/4, the image of the similarity solution under the action of these
transformations is given by

uδ(r, t; δ) = u = 1
2
kt−1/2{U0(ξ ) + 0} (3.49)

hδ(r, t; δ) = h + δ
b2�

16V 1/2t
=

k2

4t

{
H0(ξ ) + δ

�

4V

}
. (3.50)

This implies that the coefficients of the infinitesimal transformations [∂uδ/∂δ]δ=0 = 0
and [∂hδ/∂δ]δ=0 = constant, corresponding to the eigenfunctions found for λ0V =0.

Time-shift transformations are characterized by t �−→ t + δ, and the image of the
similarity solution is given by

uδ =
r

2(t + δ)
=

k

2t1/2

{
U0(ξ ) − δ

ξ

t

}
, (3.51)

hδ =
1

8

{
r2

(t + δ)2
+

k2�

(t + δ)

}
=

k2

4t

{
H0(ξ ) − δ

2t
(2ξ 2 + �)

}
. (3.52)

Thus we have [∂uδ/∂δ]δ=0 = −ξ/t and [∂hδ/∂δ]δ=0 = − 1
2
(2ξ 2+�)/t which are equivalent

to the eigenfunctions found for λ0T = −1.

We may also show that, for θ-dependent perturbations (with m =1), the eigenvalue
λ1S = − 1

2
is associated with spatial translations. These transformations are defined by

r �−→ r + δeiθ and the image of the self-similar solution becomes

uδ = 1
2
kt−1/2

{
U0(ξ ) + δ

eiθ

kt1/2

}
,

hδ = 1
4
k2t−1

{
H0(ξ ) + δ

ξeiθ

kt1/2

}
.

The coefficients of the infinitesimal transformation are thus given by [∂uδ/∂δ]δ=0 =
eiθ/(kt1/2) and [∂hδ/∂δ]δ=0 = ξeiθ/(kt1/2).

With m =1 and λ1S = − 1
2
, the expressions from the linear stability analysis yield

Φ1S ∼ ξeiθ and Ψ1S ∼ eiθ which are equivalent to the coefficients of the infinitesimal
transformation.

These calculations show that imposing the eigenfunctions that correspond to
eigenvalues λ0V , λ0T , and λ1S on the similarity solution (2.7)–(2.10) causes no change
in its structure, but merely redefine the spatial and temporal origins or the volume
of fluid transported by the flow. The effects of these eigenfunctions and the loss of
similarity can always be negated by appropriately redefining the variables V, t, and r.

4. Concluding remarks
We have studied the development of inertial gravity currents that arise as a result

of compositional differences between the intruding and ambient fluids. By introducing
series expansions about the self-similar solutions, we have carried out linear stability
analyses to investigate the time evolution of small disturbances that are imposed on
these solutions. In axisymmetric geometry, we have established that the self-similar
solution is linearly stable to disturbances that involve both radial and azimuthal
dependences by proving that all eigenvalues have negative real parts. We have derived
an asymptotic formula for the eigenvalues which, in the absence of θ-dependence,
reduces to a formula that improves on the asymptotic expression obtained by GR.
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The asymptotic analysis indicates that, in the limit |Im(λmn)| → ∞, for fixed values

of the Froude number in the interval 0 <Fr �
√

2, the value of Re(λmn) = Λmn, that
determines the rate of decay of the disturbance eigenfunctions, approaches a constant
Λ∞(Fr) between − 1

4
and 0. For example, when Fr =1, the asymptotic rate of decay

is given by t−0.22. Numerical calculations have shown that the direction from which
the asymptotic value of Λmn is approached is a function of dependence on θ. For
disturbances involving eigenfunctions with m < 2, the approach is from above while,
for m � 2, it is from below. This is important because it means that disturbances
involving only m � 2, with a leading-order rate of decay given by tΛ∞, decay faster
than disturbances involving only m < 2. Hence axisymmetric perturbations decay less
rapidly than asymmetric ones in general.

We have also shown the relationship between the perturbation eigenfunctions
and the symmetry transformations of the self-similar solution. The calculations
demonstrate that three of the eigenfunctions correspond to a change of volume
and changes of spatial and temporal origins. Thus, when considering to which
similarity solution the flow evolves from certain initial conditions, by appropriate
definition of volume carried by the current and spatial and temporal origin, these
perturbations may be absorbed into the ‘target’ similarity solution. Additionally, for
two-dimensional currents, we have proved analytically (in the Appendix) that all
eigenvalues have a real part equal to − 1

2
which indicates that the amplitude of all

non-trivial eigenfunctions of the disturbances decay like t−1/2.

These results are useful because they further assert the value of similarity solutions
for modelling the spread of a finite volume of dense fluid through a less dense
environment. We have demonstrated that the similarity solution is linearly stable to
perturbations and thus we anticipate that it provides the intermediate asymptotics
for this class of motion. Moreover, since axisymmetric perturbations generally decay
slowest, we expect laboratory realizations of these flows to develop a radial symmetric
profile.

Appendix. Two-dimensional currents
We study the two-dimensional compositional gravity current produced by the

instantaneous release of a finite volume of a dense fluid within a less dense ambient.
The dimensionless governing equations are given by

∂th + ∂x(uh) = 0, (A 1)

∂tu + ∂x

(
1
2
u2 + h

)
= 0, (A 2)

where x denotes the horizontal space coordinate, u now represents the depth-averaged
velocity in the x-direction, and lengths and times have been made dimensionless with
respect to h0 and (h0/g

′)1/2, respectively. The boundary conditions take the form∫ xF

0

h dx = V, u(0, t) = 0, ẋ2
F = Fr2h(xF , t), ẋF = u(xF , t), (A 3)

where the dimensional volume per unit width Ṽ = V h2
0.

Then, looking for a solution of the form

u(x, t) = 2
3
κt−1/3U0(y), h(x, t) = 4

9
κ2t−2/3H0(y), y =

x

a(V t2)1/3
, (A 4)
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where κ and a = κV −1/3 are constants, with the latter to be determined such that
y = 1 at the front of the current, yields (Fannelop & Waldman 1972; Hoult 1972)

U0(y) = y, (A 5)

H0(y) = 1
4
(y2 + Π), (A 6)

where Π = 4/Fr2 − 1 and κ = [(27V Fr2)/(12−2Fr2)]1/3. The development of this simi-
larity solution subsequent to the introduction of a small perturbation is studied by
introducing the expansions

u(x, t) = 2
3
κt−1/3{U0(y) + δU1(y, t) + · · ·},

h(x, t) = 4
9
κ2t−2/3{H0(y) + δH1(y, t) + · · ·},

xF (t) = κt2/3{1 + δyF1(t) + · · ·},

where δ � 1 is the amplitude of the perturbation. We substitute these expansions into
the governing equations (A 1) and (A 2), and balance terms of equal powers of δ.

The terms at O(1) yield the similarity solution. At O(δ), the equations of mass and
momentum conservation become, respectively,

3
2
t∂tH1 + ∂y(H0U1) = 0, (A 7)

3
2
t∂tU1 + ∂yH1 + 1

2
U1 = 0. (A 8)

The boundary conditions are given by

U1(0, t) = 0, U1(1, t) = 3
2
t ẏF1, H1(1, t) = 3

4
(Π + 1)t ẏF1 + 1

2
ΠyF1. (A 9)

Eliminating H1 between equations (A 7) and (A 8) yields a second-order partial
differential equation in U1

9t∂t (t∂tU1) + 3t∂tU1 = 4∂y∂y(H0U1). (A 10)

In addition to the first two conditions in (A 9), the solution to this equation must
satisfy the following boundary condition:

∂yU1(1, t) = − 3
2
(5t ẏF1 + 3t2ÿF1), (A 11)

obtained by evaluating (A 7) at y = 1.

We use the method of separation of variables and look for a solution of the form

U1(y, t) =

∞∑
n=0

ant
λnΨn(y), yF1(t) =

∞∑
n=0

bnt
λn , (A 12)

where an and bn are constants, and λn = Λn + iΩn are the eigenvalues of the system.
The eigenfunctions Ψn then satisfy the ordinary differential equation

(y2 + Π)Ψ ′′
n + 4yΨ ′

n + (1 − 3λn)(2 + 3λn)Ψn = 0, (A 13)

subject to the boundary conditions

Ψn(0) = 0, Ψn(1) = 3
2
λnbn/an, Ψ ′

n(1) = − 9
2
λn

(
λn + 2

3

)
bn/an. (A 14a–c)

The substitution y2 = −Πξ transforms equation (A 13) to

ξ (1 − ξ )Ψ ′′
n +

(
1
2

− 5
2
ξ
)
Ψ ′

n − 1
4
(1 − 3λn)(2 + 3λn)Ψn = 0, (A 15)
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which is the hypergeometric differential equation (e.g. Abramowitz & Stegun 1965).
The solution of (A 15) which satisfies the (A 14a, b) is given by

Ψn = 3
2
λnbny

2F1

(
1 − 3

2
λn,

3
2

+ 3
2
λn;

3
2
; −y2/Π

)
an 2F1

(
1 − 3

2
λn,

3
2

+ 3
2
λn;

3
2
; −1/Π

) . (A 16)

This solution does not satisfy the third boundary condition, (A 14c) in general.
Requiring the solution to also satisfy this condition gives an equation that specifies
the eigenvalues of the system. Substituting (A 16) into (A 14c) yields

2F1

(
2 − 3

2
λn,

5
2

+ 3
2
λn;

5
2
; −1/Π

)
2F1

(
1 − 3

2
λn,

3
2

+ 3
2
λn;

3
2
; −1/Π

) =
3Π

2 − 3λn

(A 17)

which must be satisfied by all the eigenvalues λn. We note that boundary condition
(A 14c) is trivially satisfied by (A 16) for the eigenvalues λV = 0 and λT = −1. These two
eigenvalues are associated with change of mass and time-shift symmetry transforma-
tions of the problem, respectively.

GR have proved that Λn < 0 for this problem. We now prove analytically that
Λn = − 1

2
for all n. Using the formula (taken from Abramowitz & Stegun 1965)

2F1(a, b; c; z) = (1 − z)c−a−b
2F1(c − a, c − b; c; z), (A 18)

equation (A 17) can be transformed into

2F1

(
1
2

+ 3
2
λn, − 3

2
λn;

5
2
; −1/Π

)
2F1

(
1
2

+ 3
2
λn, − 3

2
λn;

3
2
; −1/Π

) =
3(1 + Π)

2 − 3λn

. (A 19)

Then applying the contiguous relation (Abramowitz & Stegun 1965)

z(c − b) 2F1(a, b; c + 1; z) = c 2F1(a − 1, b; c; z) − c(1 − z) 2F1(a, b; c; z) (A 20)

gives

2F1

(
− 3

2
λn − 1, 1

2
+ 3

2
λn;

3
2
; −1/Π

)
= 0. (A 21)

This equation implies that F equals its complex conjugate F̄ , where F denotes the
hypergeometric function in (A 21). This is only possible if the real parts of the first
two arguments of F are equal, that is,

− 3
2
Λn − 1 = 1

2
+ 3

2
Λn.

Thus we deduce the result Λn = − 1
2

which not only establishes that the self-similar
solution (A 4)–(A 6) is linearly stable but also implies that the perturbation eigen-
functions all decay at the same rate of t−1/2. The latter is a remarkable result which
represents a departure from the usual situation where different eigenfunctions decay
at different rates.
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